Tag Archives: San Juan County

More on Western Tent Caterpillars (Malocosoma californicum pluviale)

The Western Tent Caterpillar is probably one of the most studied and also one of the most loathed insects in the Pacific Northwest. I’m hoping to change attitudes by shining a light on some of the ecological facets of the species and how it connects to the larger food web. We often deem something a pest before really considering the whole picture. Is there anything good about a caterpillar eating leaves off a tree? It depends on a lot of factors. Why not take time to examine the web…and I’m not referring to the tent here either.

It was just last week in my community (San Juan Island), that I heard a story about a woman who fell and hit her head after getting on a ladder to BURN the tent caterpillars out of her fruit trees. Hmmm. Please don’t try this at home. It isn’t safe. Burning the tents out of trees can actually do more damage to the tree than the caterpillars do by eating the leaves.

The photos below show something that happens to the tent caterpillars we may not notice in our panic to eradicate them from our trees. The egg on the caterpillar was laid by a parasitic Tachinid fly. It chose the head, so the caterpillar can’t chew it off its body. The egg is shed when the caterpillar molts, but the fly is already developing inside the caterpillar. It will literally eat the caterpillar from the inside out. So, when you clip off those tents and throw them into the fire, you are also killing the natural and best pest predators along with them. Naturus interruptus! We do more harm than good by intervening.

Western Tent Caterpillar with Tachinid Fly egg on head
Western Tent Caterpillars (Malocosoma californicum pluviale) with deceased individuals in background likely affected by nucleopolyhedrovirus 

The Western Tent Moth caterpillars are affected by a few other parasitoids. Braconid wasps also attack them. Some lay eggs on the cocoons. There is also a nucleopolyhedrovirus that infects them when populations are high. In my rush to get this out, I may come back and edit, but I’ve referenced lots of great information below so you can read more about this on your own.

To add to all of this, over the weekend, my daughter and I found some tents in the orchard trees on our property. I might just be the ONLY resident in the San Juans excited to see them. Hmmm. Well, what I found was even more interesting. The tents had dead caterpillars inside and living family groups of earwigs. We also found a super cute jumping spider!

I was curious about this because earwigs are known to be garden pests, I did find some studies about earwigs that are PREDATORY on species of Lepidoptera. While these studies addressed other species of moths, the gist was that the plant species sends out a chemical signal that calls pest predators when it is being attacked by caterpillars. Every plant and pest predator sends and responds (respectively) to various signals, some very specific to each relationship. The plant is calling in the army! It may not always be earwigs, but there are wasps, flies, and others that come to aid the plant when it is under attack. Yes, it is very cool!!!

Earwigs and Jumping spider eat tent caterpillars

Oh, and those Western Tent Caterpillars turn into adult moths in mid summer. They are attracted to light. Turn off your outdoor lights. Nature will thank you and you will be less attractive to the mating moths. Many moth species also tend to fly off en-masse when they are mate seeking. These periodic, seasonal pulses of terrestrial invertebrates in our region end up in nearshore marine habitats when they fly out over the ocean.

Various studies have surveyed the stomach contents of Chinook and Coho Salmon, and other fishes in nearshore marine habitats during their first year at sea. Two studies I found reported finding Western Tent Moths and Spruce Budworm Moths (species considered as pests in northern boreal forests) in sampled gut contents. Brodeur et al., (1987) reported the following from one survey, “The incidence of several juvenile coho collected after the storm which had stomachs that were distended with over 100 of these insects exemplifies the ability of these juvenile coho to readily exploit these allochthonous inputs into the marine environment.” They were referring to the “pest” species, (Choristoneura occidentalis) or Spruce Budworm Moth in this instance. In Brennan et al. (2002), sampling of salmon in Central Puget Sound found insect prey included Western Tent Moths (Malocosoma sp.), and that “Lepidoptera in 2002 diets were gravimetrically dominated by tent caterpillar moths (Malocosoma sp.) 51% of Lepidoptera category by weight.” They also reported that Lepidoptera in their samples “were only abundant in 2002.” Coincidentally perhaps, this was a year of a recorded outbreak of tent caterpillars in WA state.

Other studies acknowledge terrestrial invertebrates as a better quality food than marine crustaceans for developing salmon. Periodic, cyclic, or seasonal events resulting in abundant insect flotsam in marine habitats may be missed, or difficult to record, but undoubtedly play a role in feeding fish in nearshore marine habitats.

Take away point here. Even bugs we see as pests have a role in ecosystems. Salmon and other species of wildlife don’t have grocery stores to visit when they need a meal. They rely on seasonal and periodic availability of food. It’s all they have, and it’s important for us to appreciate that.

Please take a moment to scroll through some of the photos below. Definitely check out the fantastic animation by April Randall about the adult moths flying out over the shoreline and being eaten by salmon! Don’t miss checking out those references and reading material too. If you are curious to know more, shoot me an email and I’m happy to send you literature for further reading.

Thank you!

Malocosoma californicum pluviale with Tachinid fly egg on head
Malocosoma californicum pluviale caterpillars affected by nucleopolyhedrovirus 

Jumping spider eating Malocosoma californicum pluviale caterpillar (photo credit to Alex Maas and artistic rendering by Cynthia Brast-Bormann)
Parasitized Malocosoma californicum pluviale cocoon (Tachinid fly parasite)
Animation by April Randall, Orcas Island

References and Further Reading

Bell, K., Naranjo-Guevara, N., Santos, R., Meadow, R., & Bento, J. (2020). Predatory Earwigs are Attracted by Herbivore-Induced Plant Volatiles Linked with Plant Growth-Promoting Rhizobacteria. Insects11(5), 271. https://doi.org/10.3390/insects11050271

Clark, E. C. (1958). Ecology of the Polyhedroses of Tent Caterpillars. Ecology39(1), 132–139. https://doi.org/10.2307/1929975

Ciesla, W. , Ragenovich, I.R. 2008. Western Tent Caterpillar. USDA Forest Insect and Disease Leaflet 119. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev2_042847.pdf

Cooper, Dawn & Cory, Jenny & Theilmann, David & Myers, Judith. (2003). Nucleopolyhedroviruses of forest and western tent caterpillars: Cross-infectivity and evidence for activation of latent virus in high-density field populations. Ecological Entomology. 28. 41 – 50. 10.1046/j.1365-2311.2003.00474.x.

Dahlhoff, V. Woods, A. and B. Larkin. 2019. The Western Tent Caterpillar, Malocosoma californicum pluviale. MPG North Field Notes. https://www.mpgnorth.com/field-notes/2019/08/western-tent-caterpillar-malacosoma-californicum-pluviale

Furniss RL, Carolin VM. 1977. Western forest insects. U.S. Department of Agriculture, Forest Service, Washington, D.C. Miscellaneous Publication 1339. 654 p.

Knight, G. A.; Lavigne, R. J.; and Pogue, M. G. 1991. “The Parasitoid Complex of Forest Tent Caterpillar,
Malacosoma Disstria (Lepidoptera: Lasiocampidae), in Eastern Wyoming Shelterbelts,” The Great Lakes Entomologist, vol 24 (4) Available at: https://scholar.valpo.edu/tgle/vol24/iss4/7

Rodstrom, R & Resources, Greenwood & Portland, Oregon & John, J & Brown, John. (2017). FOREST AND WESTERN TENT CATERPILLARS Insect Pest Management in Hybrid Poplars Series. 10.13140/RG.2.2.24262.37442.

Stehr, F.W. & E.F. Cook 1968. A revision of the genus Malacosoma Hubner in North America (Lepidoptera: Lasiocampidae): systematics, biology, immatures, and parasites. Bulletin of the United States National Museum, (276): 1-321. https://archive.org/details/bulletinunitedst2761968unit/page/n6/mode/1up?view=theater

Witter JA, Kuhlman HM. 1972. A review of the parasites and predators of tent caterpillars (Malacosoma spp.) in North America. Minnesota Agricultural Experiment Station. Technical Bulletin 289. 48 p.

Additional References***Updated 06.23.2022

Brennan, J.S., K.F. Higgins, J.R. Cordell, and V.A. Stamatiou. 2004. Juvenile Salmon Composition, Timing Distribution, and Diet in Marine Nearshore Waters of Central Puget Sound in 2001-2002. King County Department of Natural Resources and Parks, Seattle Wa. 164pp.

Brodeur, R. D., Mundy, B. C., Pearcy, W. G., & Wisseman, R. W. 1987. The neustonic fauna in coastal waters of the northeast Pacific: abundance, distribution, and utilization by juvenile salmonids. Oregon State University Publication ORESU-T-87-001.

Brodeur, R. D. (1989). Neustonic feeding by juvenile salmonids in coastal waters of the Northeast Pacific. Canadian Journal of Zoology67(8), 1995-2007.

Brodeur, R. D., Lorz, H. V., & Pearcy, W. G. (1987). Food habits and dietary variability of pelagic nekton off Oregon and Washington, 1979-1984. NOAA Technical Report NMFS 57.  U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service.

Cheng L, Birch M. 2008. Insect flotsam: an unstudied marine resource. Ecol Entomol 3:87–97.

Cheng L. 1975. Marine pleuston: animals at the sea-air interface. Oceanogr Mar Biol Annu Rev. 13:181–212.

Cheng, L., M. C. Birch. 2009. Terrestrial insects at sea.  Journal of the Marine Biological Association of the United Kingdom57, 4, (995-997).

DNR TreeLink. Tenting in the Trees. 2012. WSU Extension Puget Sound Stewardship E-Newletter 5:4

Drake, V.A., D. R. Reynolds, Radar Entomology: Observing Insect Flight and Migration (CABI, Wallingford, UK, 2012).

Duffy, E.J., D.A. Beauchamp, R. Sweeting, R. Beamish, and J. Brennan. 2010. Ontogenetic diet shifts of juvenile Chinook salmon in nearshore and offshore habitats of Puget Sound. Transactions of the American Fisheries Society. 139:803-823. 

Glick P. 1939. The distribution of insects, spiders, and mites in the air. Washington D.C.: US Department of Agriculture. 

Green K., 2011. The transport of nutrients and energy into the Australian Snowy Mountains by migrating bogong moths Agrotis infusaAustral. Ecol. 36, 25–34.

Gutierrez, L. 2011. Terrestrial invertebrate prey for juvenile Chinook salmon: Abundance and environmental controls on an interior Alaskan river. MS Thesis, University of Alaska Fairbanks, Fairbanks, AK. 

Hardy AC, Cheng L. 1986. Studies in the distribution of insects by aerial currents. III. Insect drift over the sea. Ecol Entomol. 113:283–90.

Helm RR. 2021. The mysterious ecosystem at the ocean’s surface. Plos Biology. Apr;19(4):e3001046.

Holland RA, Wikelski M, Wilcove DS. How and why do insects migrate? Science. 2006 Aug 11;313(5788):794-6. doi: 10.1126/science.1127272. PMID: 16902129.

Hu G, Lim KS, Horvitz N, Clark SJ, Reynolds DR, Sapir N, Chapman JW. Mass seasonal bioflows of high-flying insect migrants. Science. 2016 Dec 23;354(6319):1584-1587. doi: 10.1126/science.aah4379. PMID: 28008067.

Landry J. S., Parrott L., Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects? Ecosphere 7, e01265 (2016).

Locke, A., S. Corey. 1986. Terrestrial and freshwater invertebrates in the neuston of the Bay of Fundy, Canada. Canadian Journal of Zoology64(7): 1535-1541. https://doi.org/10.1139/z86-228

Myers, J. 2000. Population fluctuations of the western tent caterpillar in southwestern British Columbia. Popul Ecol 42, 231–241. https://doi.org/10.1007/PL00012002

Peterson, C. 2013. Where Are the Yellow-billed Cuckoos? https://www.birdnote.org/listen/shows/where-are-yellow-billed-cuckoos

Satterfield, Dara & Sillett, T & Chapman, Jason & Altizer, Sonia & Marra, Peter. 2020. Seasonal insect migrations: massive, influential, and overlooked. Frontiers in Ecology and the Environment. 18. 10.1002/fee.2217.

Zaitsev, Y. P. (1971). Marine neustonology.

Radar Love

Hello Everyone!  Meet my new bug friend, Radar Love ❤️  He must have crashed the wrong party.  Radar gone wrong!  I found him floating in our pool, in the midst of those raucous “dippers” (the Diplotaxis beetles).  Radar Love was so happy I didn’t let him drown, and even happier that I didn’t stick him with a pin and add him to the bug equivalent of a stamp collection.  We hung out together for a bit and I took some photos and video to remember him by.  Radar Love was released into the forest so he can make more of his kind.  

Odonteus obesus
Odonteus obesus

Odonteus obesus
Odonteus obesus
Odonteus obesus

Location:  San Juan Island

ID: Geotruipidae (Odonteus obsesus)

Special thanks to my friend, Michelle Sloan Bos and Tyler Hedlund for ID assistance with this.  I was rushing to get ready for my special spider outing.  More about that later.  For now, enjoy this rare and exciting  sighting of a most special little beetle that calls San Juan Island his home.  

More Info: https://bugguide.net/node/view/160586

Odonteus obesus

What are extrafloral nectaries?

Ants (Lasius sp.) on Big Leaf Maple Extra-Floral Nectary – May 17, 2022, San Juan Island, WA

When you study insects, or even birds for that matter, you start to understand you have to get to know plants a bit too.  It’s all connected.  

Plants (including trees and shrubs) provide food and shelter for many different species of animals.  Admittedly, I just don’t know a lot about the parts of plants, beyond things like a tree trunk, bark, limbs, branches, leaves, or stems or flowers, nuts, fruit.  The obvious parts.  

There are some not so obvious parts.  Like these extrafloral nectaries.  Huh? Sounds weird.  Keep reading. 

Extrafloral nectaries (EFN’s) are glands occurring on more than 2000 plant species in 64 families.  Extrafloral literally means outside of the flower. When we think of nectar, we usually think of little bees and hummingbirds flying around, visiting pretty flowers to sip nectar and in the process, pollinate all of our plants.  It’s just that plants are a bit more complex.  These glands are located in various places on plants (including trees and shrubs), and may be found on the laminae of leaves, petioles, rachids, bracts, stipules, pedices, fruit, etc.  (Mizell, 2019).  

These glandular secretions are a fascinating part of how plants attract and sustain a diverse, ecological community, providing sustenance for a multitude of species, including both pests and predators.  You can find ants, aphids, beetles (including ladybugs), bees, wasps, and possibly even birds utilizing this excretory faucet to sip what consists of mostly carbohydrate-rich sugar, but also comprised of a wide array of amino acids and other nutrients.  

Why are these important? Well, scientists are still trying to fully understand all of the diverse relationships around extra-floral nectaries. It is thought perhaps, beyond attracting organisms to a food source, they play a role in orchestrating a plant’s defense strategy against predators. They also are believed to provide a source of food and/or beneficial nutrients for various organisms during the off-season – when flowering and pollen sources are not available. They may also reduce conflict between ants and other pollinators by partitioning resources (Villamil & Stone, 2019).

Lasius sp. Ants at Extra-floral nectaries on Big Leaf Maple, 05.17.2022, San Juan Island, WA

Ant and aphid hanging out on extrafloral nectaries on Cherry Tree, San Juan Island, 05.17.2022

References

Bentley, B. L. (1977). Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics8(1), 407-427.

Holopainen JK, Blande JD, Sorvari J. Functional Role of Extrafloral Nectar in Boreal Forest Ecosystems under Climate Change. Forests. 2020; 11(1):67. https://doi.org/10.3390/f11010067

Mizell, R. 2019. MANY PLANTS HAVE EXTRAFLORAL NECTARIES HELPFUL TO BENEFICIALS.  UF IFAS Extension Bulletin. https://edis.ifas.ufl.edu/publication/IN175

Villamil, N., Boege, K., & Stone, G. N. (2019). Testing the Distraction Hypothesis: Do extrafloral nectaries reduce ant-pollinator conflict?. The Journal of ecology107(3), 1377–1391. https://doi.org/10.1111/1365-2745.13135

No Clowning Around in the Pool Without a Life Jacket.

Yesterday I was the lifeguard. And, I had swimmers needing saving!

Hister Beetle (Genus Margarinotus I believe) – April 7, 2022 San Juan Island, WA

Here’s one of the species I used a piece of cardboard to rescue from drowning. This is a beetle in the family Histeridae, also known as a Clown Beetle. I told him no more clowning around without a life jacket. 🤣 Watch as it wrings its hindwings out, rolling them in under the leathery elytra (the outer wings).

I believe this beetle is in the genus Margarinotus. For ID beyond this, I’d need more time and a lot of patience. However, I can tell you I’ve learned some species of Hister beetles are associated with the nests of rodents, birds, and even ants and termites. They are pest predators, meaning they eat other insects at all life stages. They also are especially adept predators of fly eggs. You can often find them in leaf litter, dung, carrion, and under tree bark, or living in those ant mounds where they may be fed by ants, eat the leftovers the ants discard, or in some cases, they eat the ants!

Some other curious tidbits about these beetles include their acting ability. They play dead (Thanatosis) to deter predators. The word Hister is derived from Latin and means “Actor.”

Hister Beetle (I believe Margarinotus sp) – San Juan Island, WA

References:

Caterino, M. S. (2010). A review of California Margarinotus Marseul (Coleoptera: Histeridae: Histerinae: Histerini), with descriptions of two new species. The Coleopterists Bulletin64(1), 1-12. https://bioone.org/journals/The-Coleopterists-Bulletin/volume-64/issue-1/0010-065X-64.1.1/A-Review-of-California-Margarinotus-Marseul-Coleoptera–Histeridae/10.1649/0010-065X-64.1.1.pdf?casa_token=FFQE6VfrPhwAAAAA:6hS4kWWWX-lGeUPQFiU-7Dc2atg_nhsgP0almrxzvWjgwhxDLMShzekiAS7HWEKT5_AL2n4i

Wenzel, R. L. (1960). Three new histerid beetles from the Pacific Northwest, with records and synonymies of additional species (Coleoptera: Histeridae). https://www.biodiversitylibrary.org/page/2847194

Dolerus sp. Sawfly

I found another species of Sawfly in our above ground pool today. This one is entirely black. Size is approximately 7-8mm. This looks to be in the genus Dolerus. From what I’ve found about host plants, it looks like the larvae feed on most grasses and horsetail. Females deposit eggs into the plant tissue where they hatch and the larvae will feed for approximately one month before exiting and pupating overwinter in the surrounding soil. There is one generation (univoltine) per year and adults emerge in early spring. Adults are recorded as feeding on tree sap from Maple (Acer), Apple (Malus), and Pear (Pyrus). They also take nectar from Willow (Salix) flowers, and from Cherry and Plum (Prunus) flowers. This means they do provide some pollination activity.

Looks like WWU Biology Department is working on a web page for Sawfly identification, but it’s not up and running yet. You can find their link below and bookmark it to check out at a later date.

Dolerus sp. Sawfly
Dolerus sp. Sawfly – San Juan Island, WA 03.29.2022
Dolerus Sawfly – Specimen #2

References and Further Reading

Baine Q, Looney C (2019) Plant associations for three sawfly species (Hymenoptera, Tenthredinidae) in the Pacific Northwest. Journal of Hymenoptera Research 74: 27–33. https://doi.org/10.3897/jhr.74.46795

bugguide.net https://bugguide.net/node/view/13561

Looney C, Smith DR, Collman SJ, Langor DW, Peterson MA (2016) Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State. Journal of Hymenoptera Research 49: 129–159. doi: 10.3897/JHR.49.7104

Sawfly GenUS https://idtools.org/id/sawfly/factsheet.php?name=17498

WWU Biology PNW Sawflies http://pnwsawflies.biol.wwu.edu/accounts/login/

The Teeny Tiny “Trashline Orb Weaver” – Yes, that’s really the name!

Trashline Orb Weaver (Cyclosa sp.) San Juan Island, WA 09.06.2021

I am very nearly blind when I try to see things up close, so it truly surprises me how I SEE things like the tiny “laundry” line of dead bugs this little orb weaver had strewn along a filmy thread between the boughs of our fir tree. At first, I thought it was just debris, stuck to the remnant of a spider thread, long abandoned. Upon closer inspection, I saw more threads and then my attention focused on the center, where I was able to discern what looked like teeny legs curled up around a body.

Trashline Orb Weaver

I used my clip on macro lens to get a better look. Indeed, there was a tiny spider in the center. I thought it was dead. That’s EXACTLY what the spider was hoping I’d think, and then I’d move on and the spider could enjoy the morning sun, and maybe a tiny bug for breakfast too.

Trashline Orb Weaver

Trashline Orb Weaver

I had a hard time getting decent photos. Even with the macro lens, focusing was tough. The wind would blow at just the WRONG second and I’d have to start all over again. I couldn’t find my tripod, but finally got a decent pole to help me balance, and went out to take photos at different times over a period of 2 days. I even went out last night and took a picture.

Awake or Sleeping? Trashline Orb Weaver (Cyclosa sp.) at night. San Juan Island 09.07.2021

It was fairly easy to identify the spider to Genus (Cyclosa), but species ???? . After going through the literature I had, I narrowed it to 2 possibilities, but reached out to Rod Crawford for help. Rod is the curator of arachnids at Seattle’s Burke Museum and this is what he says,

“Yes, it’s a Cyclosa. This time of year all Cyclosa are juvenile, and I for one cannot distinguish between our 2 species (C. conica, C. turbinata) as juveniles. However, C. conica is more common.”

So, my little spider with a laundry line of bugs is either Cyclosa conica or Cyclosa turbinata.

Why exactly do they string the debris along their web lines? Well, again, this debris is usually made up of dead bugs and other tiny bits of debris attached to the silk line. Typically, the spider is positioned somewhere in the middle, using the debris as camouflage against predators. Often, the female spiders’ egg sacks are attached to this “laundry line” too. I think laundry line sounds better than trash line, but I don’t think I get to rename the spider.

There are five species of Cyclosa spiders in North America, north of Mexico. I believe we only have the two mentioned by Rod here. I’m going back out to check on my new friend after I finish my post. Enjoy the day and remember to Be Nice to Spiders!

Thanks for reading.

References and Fun Reading

Eaton, E. 2012. Spider Sunday: Trashline Orb Weavers. Bug Eric Blogspot. http://bugeric.blogspot.com/2012/06/spider-sunday-trashline-orb-weavers.html

Bugguide.net. 2021. Genus Cyclosa – Trashline Orb Weavers. https://bugguide.net/node/view/1989

Trashline Orb Weavers. Missouri Department of Conservation. https://mdc.mo.gov/discover-nature/field-guide/trashline-orbweavers

The Three Banded Lady Beetle (Coccinella trifasciata subversa)

Coccinella trifasciata subversa on clover

I found my first Three Banded Lady Beetle (Coccinella trifasciata subversa) this morning in the patch of clover in front of my home. At least I believe it is the subspecies ‘subversa’ according to the information I found online and referencing the distribution map. While I did not find much information about this particular species pertaining to life in the Pacific Northwest, I did find that according to the Lost Ladybug Project, this species (Coccinella trifasciata) is considered a species of greatest conservation need in the state of New York.

Coccinella trifasciata subversa on clover Photo by Cynthia Brast-Bormann San Juan Island, WA 07.06.2020
Distribution map of Coccinella trifasciata subversa

So, because I’m interested in Lady Beetles and conservation, I submitted my photos today to the Lost Ladybug Project. They’re keeping records of sightings and I believe it’s important to collect and share data that help us understand more about the lives all of all the amazing critters we share the planet with.

If you see a Lady Beetle you are interested in knowing more about, take a look at the Lost Ladybug Project here – http://www.lostladybug.org/index.php

If you have time, check out my Facebook Page, Bugs of the San Juan Islands at https://www.facebook.com/buggingyoufromSJI/

Thanks for reading! 🐞🐞🐞

The House Pseudoscorpion (Cheliferidae cancroides)

I got the coolest picture of a bug on Friday! 

House Pseudoscorpion (Cheliferidae cancroides)
2/28/2020
San Juan Island
photo by T. Santora
House Pseudoscorpion (Cheliferidae cancroides)
2/28/2020
San Juan Island
photo by T. Santora

This little creature was photographed on February 28, 2020 by Trever Santora on San Juan Island, WA.

It’s a Pseudoscorpion! Found on the windowsill of his house and no larger than a tiny sesame seed, I believe it to be an immature House Pseudoscorpion (Cheliferidae cancroides). 

Keep an eye out for these. They’re quite harmless to humans and can’t sting or bite you. Pseudoscorpions are predacious and beneficial because they eat other organisms that are pests. Some live in birds’ nests and eat the mites that can build up and harm nestlings. 

Since they don’t have wings and can’t fly, pseudoscorpions move around by phoresy. That means they’ll hitch a ride on someone who can! Not just birds, but bees, wasps, and flies can also provide a free lift.

Check out https://bugguide.net/node/view/728962 for more information.

Thanks for reading 🌻

Long-horned Leaf Beetle (Plateumaris germari)

I really enjoy the days when I have an opportunity to go over insect images I’ve taken, but haven’t yet had the chance to identify. This small (approx 7-8mm), metallic beetle is a leaf beetle in the family Chrysomelidae. It’s a Long-horned Leaf Beetle (Plateumaris germari). They are associated with aquatic habitats and this specimen was found near a wetland habitat on San Juan Island, WA., May 12, 2015. Yes. I’m slow at getting around to sorting things, but was happy to share this one today.

Long-horned Leaf Beetle
Plateumaris germari
San Juan Island, WA
May 12, 2015
photo by Cynthia Brast
Long-horned Leaf Beetle
Plateumaris germari
Long-horned Leaf Beetle
Plateumaris germari
Long-horned Leaf Beetle
Plateumaris germari
Long-horned Leaf Beetle
Plateumaris germari

References: https://bugguide.net/node/view/601794

Corona-bug

Coronavirus

Someone in San Juan County is being tested by the CDC for possible infection with the novel coronavirus (COVID-19). The person’s ID and island of residence has not been released. If confirmed, this would be the first instance of the virus in San Juan County and the second case in WA state. https://www.sanjuanjournal.com/news/person-under-investigation-for-novel-coronavirus/

The Coronavirus is named after the crown-like spikes found on the surface of the virus. In Latin, “corona” means ‘crown.’ You can view microscopic images of the virus on NPR’s site here ~ https://www.npr.org/2020/02/13/805837103/images-what-new-coronavirus-looks-like-under-the-microscope

Information about the virus, symptoms, etc. can be found on the CDC website here ~ https://www.cdc.gov/coronavirus/about/index.html , with further information on the virus, published by the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses found here – https://www.biorxiv.org/content/10.1101/2020.02.07.937862v1.full Researchers have also found that the coronavirus can live on fomites (surfaces) for 9 days https://eurekalert.org/pub_releases/2020-02/rb-hlc020720.php Pharmaceutical treatment of this virus is sketchy at best. Read about the difficulty of treating viruses and what research is happening here ~ https://www.livescience.com/possible-treatments-new-coronavirus.html

Lots of folks think living on an island is some sort of safe haven. I’ve spent a bit of time thinking about this and I just don’t believe that to be true. First off, if everyone got sick, we definitely do NOT have the capacity to care for people in hospitals. Probably we would quickly run out of supplies. It’s really doubtful that anyone would want to deliver things to the island if we had some type of epidemic. We could easily run out of food and fuel.

Image result for The Scream

If I’ve learned anything in the ten-plus years I’ve lived here, it’s that you should be prepared to care for yourself. Whether it’s an earthquake or other natural disaster, government breakdown (that could certainly happen given our current administration), or disease outbreak, a plan is essential! While I know we have some truly dedicated medical professionals on our island, they are limited. There’s also not any prescription drug that will cure you of coronavirus if you get it. This links to the limited treatment options that may be available or under development https://www.livescience.com/possible-treatments-new-coronavirus.html

So, my plan (if anyone in my household gets sick) is to have my self-treatment items in order. Here’s my list:

  1. Elderberry syrup. Elderberry contains Sambucol which has been clinically proven to reduce the severity and duration of viruses. For more information, see my extensive reference list below. I keep this brand for myself. Natures Answer Elderberry Syrup ~ https://www.amazon.com/gp/product/B0007CSCIS/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1
  2. Vitamin C. Vitamin C helps oxygenate your blood and supports your immune system. I take about 6000 mg of American Health Ester C in divided doses daily. I like this brand because it’s easier on my stomach ~ https://www.amazon.com/gp/product/B000MMWJHI/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
  3. Quercetin. https://www.amazon.com/Thorne-Research-Quercetin-Antioxidant-Supplement/dp/B0797DQTVZ/ref=sr_1_1_sspa?keywords=Quercetin+Thorne&qid=1581704516&s=hpc&sr=1-1-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUFON1Y3M0VRWDk4VFImZW5jcnlwdGVkSWQ9QTAzMjYzNTkxWVpCM1NZNThNRlpMJmVuY3J5cHRlZEFkSWQ9QTAzMjc0MTcxT1FNODRVOVJKR04wJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
  4. Pedialyte, Gatorade, and Ginger Ale. For rehydration!
  5. Lemon Balm. Strong antiviral properties. Use a tincture or make a tea.
  6. Ginger. Also strong antiviral properties.
  7. Saltine Crackers
  8. White rice
  9. Licorice Tea
  10. Lysine
  11. Saline Spray
  12. Motrin/Tylenol
  13. Vick’s Vapor Rub

If you can think of anything I might have left off, please feel free to write and let me know! P.S. I’m not a doctor. These are my own HOME remedies. Use your own good judgement and wash your hands a lot!

References:

Barak, Vivian & Halperin, T & Kalickman, I. (2001). The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. European cytokine network. 12. 290-6.

Castillo-Maldonado I, Moreno-Altamirano MMB, Serrano-Gallardo LB (2017) Anti-dengue serotype-2 activity effect of Sambucus nigra leaves-and flowers-derived compounds. Virol Res Rev 1: DOI: 10.15761/VRR.1000117

Chen, C., Zuckerman, D.M., Brantley, S. et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res 10, 24 (2014). https://doi.org/10.1186/1746-6148-10-24

Ganjhu RK, Mudgal PP, Maity H, et al. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease. 2015 Dec;26(4):225-236. DOI: 10.1007/s13337-015-0276-6.

Golnoosh Torabian, Peter Valtchev, Qayyum Adil, Fariba Dehghani (2019)
Anti-influenza activity of elderberry (Sambucus nigra), Journal of Functional Foods, Volume 54: 353-360, ISSN 1756-4646, https://doi.org/10.1016/j.jff.2019.01.031.
(http://www.sciencedirect.com/science/article/pii/S1756464619300313)

Karimi, S., Mohammadi, A.A., & Dadras, H. (2014). The effect of Echinacea purpurea and Sambucus nigra L. on H9N2 avian influenza virus in infected chicken embryo.

Krawitz, C., Mraheil, M. A., Stein, M., Imirzalioglu, C., Domann, E., Pleschka, S., & Hain, T. (2011). Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC complementary and alternative medicine11, 16. https://doi.org/10.1186/1472-6882-11-16

Porter, R. S., and  Bode, R. F. ( 2017)  A Review of the Antiviral Properties of Black Elder (Sambucus nigra L.) Products. Phytother. Res.,  31:  533– 554. doi: 10.1002/ptr.5782.

Roschek, Bill & Fink, Ryan & Mcmichael, Matthew & Li, Dan & Alberte, Randall. (2009). Elderberry Flavonoids Bind to and Prevent H1N1 Infection in-vitro. Phytochemistry. 70. 1255-61. 10.1016/j.phytochem.2009.06.003.

Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., & Mumcuoglu, M. (1995). Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. Journal of alternative and complementary medicine (New York, N.Y.)1(4), 361–369. https://doi.org/10.1089/acm.1995.1.361

Z ZAKAY-RONES1, E THOM2, T WOLLAN3 AND J WADSTEIN4. (2004). Randomized Study of the Efficacy and Safety of Oral Elderberry Extract in the Treatment of Influenza A and B Virus Infections. The Journal of International Medical Research. 32: 132 – 140. https://journals.sagepub.com/doi/pdf/10.1177/147323000403200205

« Older Entries